Integration have the right to be provided to uncover areas, volumes, main points and many valuable things. The is regularly used to find the area underneath the graph that a role and the x-axis.
You are watching: Integral of e^1/x
The an initial rule to recognize is that integrals and also derivatives room opposites!

Integration Rules
Here are the most valuable rules, with instances below:
Constant | ∫a dx | ax + C |
Variable | ∫x dx | x2/2 + C |
Square | ∫x2 dx | x3/3 + C |
Reciprocal | ∫(1/x) dx | ln|x| + C |
Exponential | ∫ex dx | ex + C |
∫ax dx | ax/ln(a) + C | |
∫ln(x) dx | x ln(x) − x + C | |
Trigonometry (x in radians) | ∫cos(x) dx | sin(x) + C |
∫sin(x) dx | -cos(x) + C | |
∫sec2(x) dx | tan(x) + C | |
Multiplication by constant | ∫cf(x) dx | c∫f(x) dx |
Power preeminence (n≠−1) | ∫xn dx | xn+1n+1 + C |
Sum Rule | ∫(f + g) dx | ∫f dx + ∫g dx |
Difference Rule | ∫(f - g) dx | ∫f dx - ∫g dx |
Integration through Parts | See Integration through Parts | |
Substitution Rule | See Integration by Substitution |
Example: what is the integral the sin(x) ?
From the table over it is provided as gift −cos(x) + C
It is written as:
∫sin(x) dx = −cos(x) + C
Example: what is the integral that 1/x ?
From the table over it is detailed as gift ln|x| + C
It is created as:
∫(1/x) dx = ln|x| + C
The vertical bars || either next of x average absolute value, because we don"t want to give an unfavorable values to the organic logarithm function ln.
Example: What is ∫x3 dx ?
The question is questioning "what is the integral that x3 ?"
We have the right to use the power Rule, whereby n=3:
∫xn dx = xn+1n+1 + C
∫x3 dx = x44 + C
Example: What is ∫√x dx ?
√x is also x0.5
We can use the power Rule, wherein n=0.5:
∫xn dx = xn+1n+1 + C
∫x0.5 dx = x1.51.5 + C
Example: What is ∫6x2 dx ?
We can move the 6 exterior the integral:
∫6x2 dx = 6∫x2 dx
And now use the Power dominion on x2:
= 6 x33 + C
Simplify:
= 2x3 + C
Example: What is ∫(cos x + x) dx ?
Use the sum Rule:
∫(cos x + x) dx = ∫cos x dx + ∫x dx
Work the end the integral of each (using table above):
= sin x + x2/2 + C
Example: What is ∫(ew − 3) dw ?
Use the distinction Rule:
∫(ew − 3) dw =∫ew dw − ∫3 dw
Then work out the integral of every (using table above):
= ew − 3w + C
See more: The Choice Between Developing Versus Purchasing Software Often Is Called A ____ Decision.
Example: What is ∫(8z + 4z3 − 6z2) dz ?
Use the Sum and Difference Rule:
∫(8z + 4z3 − 6z2) dz =∫8z dz + ∫4z3 dz − ∫6z2 dz
Constant Multiplication:
= 8∫z dz + 4∫z3 dz − 6∫z2 dz
Power Rule:
= 8z2/2 + 4z4/4 − 6z3/3 + C
Simplify:
= 4z2 + z4 − 2z3 + C
Integration by Parts
See Integration by Parts
Substitution Rule
See Integration through Substitution